Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.375
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542178

RESUMO

In mammals, glycated serum albumin (gSA) contributes to the pathogenesis of many metabolic diseases by activating the receptors (RAGE) for advanced glycation end products (AGEs). Many aspects of the gSA-RAGE interaction remain unknown. The purpose of the present paper was to study the interaction of glycated human albumin (gHSA) with RAGE using molecular modeling methods. Ten models of gHSA modified with different lysine residues to carboxymethyl-lysines were prepared. Complexes of gHSA-RAGE were obtained by the macromolecular docking method with subsequent molecular dynamics simulation (MD). According to the MD, the RAGE complexes with gHSA glycated at Lys233, Lys64, Lys525, Lys262 and Lys378 are the strongest. Three-dimensional models of the RAGE dimers with gHSA were proposed. Additional computational experiments showed that the binding of fatty acids (FAs) to HSA does not affect the ability of Lys525 (the most reactive lysine) to be glycated. In contrast, modification of Lys525 reduces the affinity of albumin for FA. The interspecies differences in the molecular structure of albumin that may affect the mechanism of the gSA-RAGE interaction were discussed. The obtained results will help us to learn more about the molecular basis for the involvement of serum albumin in the AGE/RAGE axis and improve the methodology for studying cellular signaling pathways involving RAGE.


Assuntos
Lisina , Albumina Sérica , Animais , Humanos , Albumina Sérica/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Mamíferos/metabolismo , Modelos Moleculares , Albumina Sérica Humana , Receptor para Produtos Finais de Glicação Avançada
2.
J Agric Food Chem ; 72(10): 5212-5221, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38433387

RESUMO

To investigate the alterations of yolk protein during embryonic development in Wanxi white goose, the egg yolk protein composition at days 0, 4, 7, 14, 18, and 25 of incubation (D0, D4, D7, D14, D18, and D25) was analyzed by two-dimensional gel electrophoresis combined with mass spectrometry. A total of 65 spots representing 11 proteins with significant abundance changes were detected. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin mainly participated in nutrient (lipid, riboflavin, and iron ion) transport, and vitellogenin-2-like showed a lower abundance after D14. Ovomucoid-like were involved in endopeptidase inhibitory activity and immunoglobulin binding and exhibited a higher expression after D18, suggesting a potential role in promoting the absorption of immunoglobulin and providing passive immune protection for goose embryos after D18. Furthermore, myosin-9 and actin (ACTB) were involved in the tight junction pathway, potentially contributing to barrier integrity. Serum albumin mainly participated in cytolysis and toxic substance binding. Therefore, the high expression of serum albumin, myosin-9, and ACTB throughout the incubation might protect the developing embryo. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin might play a crucial role in providing nutrition for embryonic development, and VTG-2-like was preferentially degraded/absorbed.


Assuntos
Gansos , Vitelogeninas , Animais , Vitelogeninas/análise , Gansos/metabolismo , Apolipoproteína B-100/análise , Apolipoproteína B-100/metabolismo , Proteômica , Transferrina , Proteínas do Ovo/química , Desenvolvimento Embrionário , Albumina Sérica/metabolismo , Imunoglobulinas/análise , Miosinas/análise , Miosinas/metabolismo , Gema de Ovo/química
3.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473711

RESUMO

Serum albumin is a popular macromolecule for studying the effect of proteins on the colloidal stability of nanoparticle (NP) dispersions, as well as the protein-nanoparticle interaction and protein corona formation. In this work, we analyze the specific conformation-dependent phase, redox, and fatty acid delivery properties of bovine albumin in the presence of shungite carbon (ShC) molecular graphenes stabilized in aqueous dispersions in the form of NPs in order to reveal the features of NP bioactivity. The formation of NP complexes with proteins (protein corona around NP) affects the transport properties of albumin for the delivery of fatty acids. Being acceptors of electrons and ligands, ShC NPs are capable of exhibiting both their own biological activity and significantly affecting conformational and phase transformations in protein systems.


Assuntos
Grafite , Nanopartículas , Coroa de Proteína , Animais , Bovinos , Albumina Sérica/metabolismo , Coroa de Proteína/metabolismo , Nanopartículas/metabolismo , Soroalbumina Bovina , Carbono , Ácidos Graxos
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124176, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513314

RESUMO

Here, we presented a second-order scattering sensor based on the Zn0.97La0.03O compound (LaZnO) for selective and stable detection of glycated albumin (GA, glycemic long-term biomarker). The LaZnO sample was obtained through the co-precipitation method and then characterized using microscopic and spectroscopic techniques. Furthermore, the selectivity, molecular interference, temporal stability, and pH effects of the LaZnO SOS signal in the absence and presence of GA were investigated. The results indicate the stability of the SOS signal over more than 60 days. Assays conducted within the pH range of 5 to 8 indicate that the detection of GA remains unaffected under the given conditions. Selectivity studies show that the SOS signal of LaZnO is reduced only upon contact with GA, while interference studies show that detection is not affected by other chemical species. Additionally, the calibration curve test showed high sensitivity of the material, with a detection limit of 0.55 µg/ml. All the results suggest that LaZnO can deliver efficiency, selectivity, accuracy, and fast response as a GA biosensor, emphasizing LaZnO's usefulness in detecting protein biomarkers.


Assuntos
Albumina Sérica Glicada , Produtos Finais de Glicação Avançada , Albumina Sérica/metabolismo , Biomarcadores , Zinco , Glicemia
5.
J Biochem Mol Toxicol ; 38(3): e23664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372178

RESUMO

The present work elucidates the role of colchicine (COL) on albumin glycation and cellular oxidative stress in diabetic cardiomyopathy (DCM). Human serum albumin (HSA) was glycated with methylglyoxal in the presence of COL (2.5, 3.75, and 5 µM), whereas positive and negative control samples were maintained separately. The effects of COL on HSA glycation, structural and functional modifications in glycated HSA were analyzed using different spectroscopical and fluorescence techniques. Increased fructosamine, carbonyl, and pentosidine formation in glycated HSA samples were inhibited in the presence of COL. Structural conformation of HSA and glycated HSA samples was examined by field emission scanning electron microscopy, circular dichroism, Fourier transform infrared, and proton nuclear magnetic resonance analyses, where COL maintained both secondary and tertiary structures of HSA against glycation. Functional marker assays included ABTS•+ radical scavenging and total antioxidant activities, advanced oxidative protein product formation, and turbidimetry, which showed preserved functional properties of glycated HSA in COL-containing samples. Afterward, rat cardiomyoblast (H9c2 cell line) was treated with glycated HSA-COL complex (400 µg/mL) for examining various cellular antioxidants (nitric oxide, catalase, superoxide dismutase, and glutathione) and detoxification enzymes (aldose reductase, glyoxalase I, and II) levels. All three concentrations of COL exhibited effective anti-glycation properties, enhanced cellular antioxidant levels, and detoxification enzyme activities. The report comprehensively analyzes the potential anti-glycation and properties of COL during its initial assessment.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Animais , Ratos , Produtos Finais de Glicação Avançada/metabolismo , Antioxidantes/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Reação de Maillard , Glicosilação , Albumina Sérica/metabolismo , Estresse Oxidativo , Albumina Sérica Humana/metabolismo , Dicroísmo Circular
6.
Phys Chem Chem Phys ; 26(10): 8528-8538, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38411624

RESUMO

Oxidative stress, generated by reactive oxygen species (ROS), is responsible for the loss of structure and functionality of proteins and is associated with several aging-related diseases. Here, we report an in vitro study to gauge the effect of ROS on the structural rearrangement of human serum albumin (HSA), a plasma protein, through metal-catalyzed oxidation (MCO) at physiological temperature through various biophysical techniques like UV-vis absorption, circular dichroism (CD), differential scanning calorimetry (DSC), MALDI-TOF, FTIR, and Raman spectroscopy. The UV-vis spectra of oxidized HSA show an early blueshift, signifying the unfolding of the protein because of ROS followed by the broadening of the absorption peak at a longer time. The DSC data corroborate the observation, revealing an exothermic transition for the oxidized sample at a longer time, suggesting in situ aggregation. The CD and FTIR spectra indicate the associated secondary structural changes occurring with time, depicting the variation of the helical content of HSA. The amide-III analysis of Raman data also complements the structural changes, and MALDI-TOF data show the mass distribution with time. Overall, this work might help determine the effect of oxidation on the biological activity of serum albumin as it can impact the physiological properties of HSA.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/química , Espécies Reativas de Oxigênio , Albumina Sérica/química , Albumina Sérica/metabolismo , Dicroísmo Circular , Estresse Oxidativo , Ligação Proteica , Espectrometria de Fluorescência
7.
Phys Chem Chem Phys ; 26(7): 6436-6447, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317610

RESUMO

Human serum albumin (HSA) is the most prominent protein in blood plasma, responsible for the maintenance of blood viscosity and transport of endogenous and exogenous molecules. Fatty acids (FA) are the most common ligands of HSA and their binding can modify the protein's structure. The protein can assume two well-defined conformations, referred to as 'Neutral' and 'Basic'. The Neutral (N) state occurs at pH close to 7.0 and in the absence of bound FA. The Basic (B) state occurs at pH higher than 8.0 or when the protein is bound to long-chain FA. HSA's allosteric behaviour is dependent on the number on FA bound to the structure. However, the mechanism of this allosteric regulation is not clear. To understand how albumin changes its conformation, we compared a series of HSA structures deposited in the protein data bank to identify the minimum amount of FA bound to albumin, which is enough to drive the allosteric transition. Thereafter, non-biased molecular dynamics (MD) simulations were used to track protein's dynamics. Surprisingly, running an ensemble of relatively short MD simulations, we observed rapid transition from the B to the N state. These simulations revealed differences in the mobilities of the protein's subdomains, with one domain unable to fully complete its transition. To track the transition dynamics in full, we used these results to choose good geometrical collective variables for running metadynamics simulations. The metadynamics calculations showed that there was a low energy barrier for the transition from the B to the N state, while a higher energy barrier was observed for the N to the B transition. These calculations also offered valuable insights into the transition process.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/metabolismo , Ligação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Ácidos Graxos/química , Termodinâmica , Sítios de Ligação
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397014

RESUMO

The binding of ubiquitous serum ligands (free fatty acids) to human serum albumin (HSA) or its glycation can affect thiol group reactivity, thus influencing its antioxidant activity. The effects of stearic acid (SA) and glucose binding on HSA structural changes and thiol group content and reactivity were monitored by fluoroscopy and the Ellman method during a 14-day incubation in molar ratios to HSA that mimic pathophysiological conditions. Upon incubation with 5 mM glucose, HSA glycation was the same as HSA without it, in three different HSA:SA molar ratios (HSA:SA-1:1-2-4). The protective effect of SA on the antioxidant property of HSA under different glucose regimes (5-10-20 mM) was significantly affected by molar ratios of HSA:SA. Thiol reactivity was fully restored with 5-20 mM glucose at a 1:1 HSA:SA ratio, while the highest thiol content recovery was in pathological glucose regimes at a 1:1 HSA:SA ratio. The SA affinity for HSA increased significantly (1.5- and 1.3-fold, p < 0.01) with 5 and 10 mM glucose compared to the control. These results deepen the knowledge about the possible regulation of the antioxidant role of HSA in diabetes and other pathophysiological conditions and enable the design of future HSA-drug studies which, in turn, is important for clinicians when designing information-based treatments.


Assuntos
Albumina Sérica Humana , Compostos de Sulfidrila , Humanos , Albumina Sérica Humana/metabolismo , Compostos de Sulfidrila/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácidos Graxos/metabolismo , Albumina Sérica/metabolismo , Ligação Proteica
9.
J Pharm Sci ; 113(5): 1359-1367, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325737

RESUMO

Immobilized human serum albumin (HSA) was developed by coupling His-tagged HSA onto Ni2+-coupled magnetizable beads (HSA-beads), allowing the HSA to be easily removed from incubation components. The HSA-beads system provides a rapid and convenient method to study HSA compound binding. In this study, the HSA-beads system was characterized and evaluated as a tool for assessing compound HSA binding properties. The free fraction (fu) values of test compounds measured using HSA-beads were comparable to those determined by equilibrium dialysis (ED), which is commonly used to evaluate albumin binding in vitro. The equilibrium dissociation constant (Kd) values determined for a series of compounds using the HSA-beads method demonstrated good correlation with literature data. This good correlation also suggests that the binding of His-HSA to the beads does not impact the conformations of the two compound binding sites of HSA, as the range of compounds tested encompassed binding to both sites. Furthermore, the Kd values of representative compounds itraconazole and BIRT2584 that were difficult to assess using ED, due to significant cellulose membrane adsorption, were successfully determined. The HSA-beads provide several advantages over ED, such as simple preparation, short assay incubation duration, and the ability to quantify both free and HSA-bound species of the test compound, facilitated by the simple separation of HSA-beads from the solution phase using a magnetic field. These properties render the HSA-beads method suitable for high-throughput studies on compound HSA binding.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/metabolismo , Albumina Sérica/metabolismo , Sítios de Ligação , Adsorção , Ligação Proteica
10.
Yakugaku Zasshi ; 144(1): 51-56, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38171795

RESUMO

Recent studies have shown that proteins already possess supersulfides during the translation. However, the distribution and the role of supersulfides are not fully understood. In this review, we focus on supersulfides in biological fluids, especially in serum. Various methods for measuring supersulfides have been developed, and these methods have elucidated the presence of supersulfides in serum proteins including serum albumin. Since the levels of supersulfides in serum and serum albumin of patients with chronic kidney disease were lower than those in healthy subjects and recovered by hemodialysis, the levels of supersulfides in serum would be an indicator reflecting oxidative stress. In addition, it has long been known that serum albumin is responsible for sulfur transference. We have applied this phenomenon to the synthesis of sulfur-added albumin (Sn-HSA) by the reaction of serum albumin with sodium polysulfide (Na2Sn). Sn-HSA suppressed the melanin production via scavenging oxidative stress. As described above, studies on the characterization of supersulfides in serum albumin may contribute to the monitoring of redox balance and prevention of oxidative stress-related diseases.


Assuntos
Insuficiência Renal Crônica , Albumina Sérica , Humanos , Albumina Sérica/metabolismo , Estresse Oxidativo , Oxirredução , Enxofre
11.
Sci Rep ; 14(1): 1788, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245578

RESUMO

Profenofos (PF) and captan (CT) are among the most utilized organophosphorus insecticides and phthalimide fungicides, respectively. To elucidate the physicochemical and influential toxicokinetic factors, the mechanistic interactions of serum albumin and either PF or CT were carried out in the current study using a series of spectroscopy and computational analyses. Both PF and CT could bind to bovine serum albumin (BSA), a representative serum protein, with moderate binding constants in a range of 103-104 M-1. The bindings of PF and CT did not induce noticeable BSA's structural changes. Both pesticides bound preferentially to the site I pocket of BSA, where the hydrophobic interaction was the main binding mode of PF, and the electrostatic interaction drove the binding of CT. As a result, PF and CT may not only induce direct toxicity by themselves, but also compete with therapeutic drugs and essential substances to sit in the Sudlow site I of serum albumin, which may interfere with the pharmacokinetics and equilibrium of drugs and other substances causing consequent adverse effects.


Assuntos
Captana , Organotiofosfatos , Praguicidas , Ligação Proteica , Espectrometria de Fluorescência , Simulação de Acoplamento Molecular , Albumina Sérica/metabolismo , Soroalbumina Bovina/química , Sítios de Ligação , Termodinâmica , Dicroísmo Circular
12.
Arch Biochem Biophys ; 753: 109916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296016

RESUMO

During persistent hyperglycaemia, albumin, one of the major blood proteins, can undergo fast glycation. It can be expected that timely inhibition of protein glycation might be add quality years to diabetic patients' life. Therefore, this study was designed to analyse the role of silibinin to reduced or delay amadori adduct formation at early glycation and its beneficial effect to improve the glycated albumin structure and conformation. We also analysed cytotoxic effect of amadori-albumin in the presence of silibinin on murine macrophage cell line RAW cells by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. Formation of early glycated product (furosine) in all samples was confirmed by LCMS. Albumin incubated with glucose only showed presence of furosine like structure. Albumin treated with silibinin in the presence of glucose did not show such furosine like peak. This LCMS result showed the silibinin play a protective role in the formation of early glycated product. HMF contents were also reduced in the presence of silibinin, when albumin was incubated with increasing concentrations of silibinin (100 and 200 µM) in the presence of glucose. ANS binding fluorescence decrease by increasing silibinin concentrations with amadori-albumin. SDS-PAGE was also showed that no significant difference in the band mobility of albumin treated with silibinin as compared to native albumin. The secondary conformational alteration in amadori-albumin due to silibinin were confirmed by FTIR. This spectrum showed slight shift in amide I and Amide II band in albumin co-incubated with glucose and silibinin as compared to albumin incubated with glucose only. We further discussed about cytotoxic effect of amadori albumin and its prevention by silibinin. MTT assay results demonstrated that amadori-albumin showed cytotoxic effect on RAW cells but silibinin showed protective role and increased the cell viability. Moreover, the results showed that silibinin has anti-glycating potential and playing a role to prevent the formation of Amadori-albumin in-vitro. Silibinin possesses strong anti-glycating capacity and can improve albumin structure and function at early stage. It might be useful in delaying the progression of diabetes mellitus and its secondary complications at early stage.


Assuntos
Antineoplásicos , Diabetes Mellitus , Animais , Camundongos , Amidas , Glucose , Glicosilação , Reação de Maillard , Albumina Sérica/química , Albumina Sérica/metabolismo , Silibina/farmacologia , Células RAW 264.7
13.
Eur J Pharm Sci ; 192: 106640, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979888

RESUMO

The binding of drugs to plasma proteins is an important process in the human body and has a significant influence on pharmacokinetic parameter. Human serum albumin (HSA) has the most important function as a transporter protein. The binding of ketamine to HSA has already been described in literature, but only of the racemate. The enantiomerically pure S-ketamine is used as injection solution for induction of anesthesia and has been approved by the Food and Drug Administration for the therapy of severe depression as a nasal spray in 2019. The question arises if there is enantioselective binding to HSA. Hence, the aim of this study was to investigate whether there is enantioselective binding of S-and R-ketamine to HSA or not. Ultrafiltration (UF) followed by chiral capillary electrophoretic analysis was used to determine the extent of protein binding. Bound fraction to HSA was 71.2 % and 64.9 % for enantiomerically pure R- and S-ketamine, respectively, and 66.5 % for the racemate. Detailed binding properties were studied by Saturation Transfer Difference (STD)-, waterLOGSY- and Carr-Purcell-Meiboom-Gill (CPMG)-NMR spectroscopy. With all three methods, the aromatic ring and the N-methyl group could be identified as the structural moieties most strongly involved in binding of ketamine to HSA. pKaff values determined using UF and NMR indicate that ketamine is a weak affinity ligand to HSA and no significant differences in binding behavior were found between the individual enantiomers and the racemate.


Assuntos
Ketamina , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Albumina Sérica/metabolismo , Estereoisomerismo , Ligação Proteica
14.
Eur J Pharm Biopharm ; 194: 9-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984594

RESUMO

The role of human serum albumin (HSA) in the transport of molecules predicates its involvement in the determination of drug distribution and metabolism. Optimization of ADME properties are analogous to HSA binding thus this is imperative to the drug discovery process. Currently, various in silico predictive tools exist to complement the drug discovery process, however, the prediction of possible ligand-binding sites on HSA has posed several challenges. Herein, we present a strong and deeper-than-surface case for the prediction of HSA-ligand binding sites using multi-cavity molecular descriptors by exploiting all experimentally available and crystallized HSA-bound drugs. Unlike previously proposed models found in literature, we established an in-depth correlation between the physicochemical properties of available crystallized HSA-bound drugs and different HSA binding site characteristics to precisely predict the binding sites of investigational molecules. Molecular descriptors such as the number of hydrogen bond donors (nHD), number of heteroatoms (nHet), topological polar surface area (TPSA), molecular weight (MW), and distribution coefficient (LogD) were correlated against HSA binding site characteristics, including hydrophobicity, hydrophilicity, enclosure, exposure, contact, site volume, and donor/acceptor ratio. Molecular descriptors nHD, TPSA, LogD, nHet, and MW were found to possess the most inherent capacities providing baseline information for the prediction of serum albumin binding site. We believe that these associations may form the bedrock for establishing a solid correlation between the physicochemical properties and Albumin binding site architecture. Information presented in this report would serve as critical in provisions of rational drug designing as well as drug delivery, bioavailability, and pharmacokinetics.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica/metabolismo , Ligantes , Albumina Sérica Humana/química , Sítios de Ligação , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Simulação de Acoplamento Molecular
15.
Int Urol Nephrol ; 56(2): 615-623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37410303

RESUMO

PURPOSE: End-stage renal disease patients on chronic hemodialysis (HD) have a shortened life expectancy compared to the general population. The aim of this study was to evaluate a possible link between three new and emerging factors in renal pathophysiology: Klotho protein, telomere length in peripheral blood mononuclear cells (TL) and redox status parameters before HD (bHD) and after HD (aHD), and to test mortality prediction capability of these emerging parameters in a population of HD patients. METHODS: The study included 130 adult patients with average age 66 (54-72), on HD (3 times per week; 4-5 h per session). Klotho level, TL, routine laboratory parameters, dialysis adequacy and redox status parameters: advanced oxidation protein products (AOPP), prooxidant-antioxidant balance (PAB), superoxide anion (O2.-), malondialdehyde (MDA), ischemia-modified albumin (IMA), total sulfhydryl group content (SHG), and superoxide dismutase (SOD) were determined. RESULTS: Klotho concentration was significantly higher aHD; 68.2 (22.6-152.9) vs. bHD 64.2 (25.5-119.8) (p = 0.027). The observed increase in TL was not statistically significant. AOPP, PAB, SHG, and SOD activity were significantly increased aHD (p > 0.001). The patients with the highest mortality risk score (MRS) had significantly higher PAB bHD (p = 0.002). Significantly lower O2.- (p < 0.001), SHG content (p = 0.072), and IMA (p = 0.002) aHD were found in patients with the lowest MRS values. Principal component analysis revealed redox balance-Klotho factor as a significant predictor of high mortality risk (p = 0.014). CONCLUSION: Decreased Klotho and TL attrition as well as redox status disturbance could be connected with higher mortality rate in HD patients.


Assuntos
Antioxidantes , Falência Renal Crônica , Adulto , Humanos , Idoso , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Estresse Oxidativo , Biomarcadores , Produtos da Oxidação Avançada de Proteínas/metabolismo , Leucócitos Mononucleares/química , Leucócitos Mononucleares/metabolismo , Albumina Sérica/metabolismo , Diálise Renal , Superóxido Dismutase
16.
Artigo em Inglês | MEDLINE | ID: mdl-37574837

RESUMO

Four organic-polyoxometalate hybrids BR4[SiW12O40] (BR-SiW), BR3[PMo12O40] (BR-PMo), BR4K[EuSiW11O40]·2H2O (BR-EuSiW) and BR6Na3[EuW10O36] (BR-EuW) were fabricated by the polyoxometalates (POMs) anions and berberine cations (BR) noted for the alkaloids in traditional Chinese herbal medicine. These hybrids have been characterized and confirmed. The interaction between hybrids and human serum albumin (HSA) was investigated in a buffer solution (pH 7.4) using ultraviolet-visible light absorption and fluorescence techniques. The classical Stern-Volmer equation was used to analyze the fluorescence quenching at three temperatures (296, 303 and 310 K), and the static quenching mechanism for interaction was proposed. The Thermodynamic parameters, enthalpy, entropy change, and Gibbs free energy of hybrids interacting on HSA were calculated by Scatchard equation. The results indicated that therewas one binding site on the protein and BR-POMs all showed stronger binding force than that of raw materials. Synchronous fluorescence results showed that the binding sites of BR-POMs and HSA were not effectively affected the surrounding microenvironment. The following antibacterial experiments implied that inhibitory effect of hybrids were synergistic effect from organic active ingredient and POMs but the simple combination. All these data were prepared for further research on biology.


Assuntos
Berberina , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/metabolismo , Berberina/farmacologia , Berberina/química , Albumina Sérica/química , Albumina Sérica/metabolismo , Espectrometria de Fluorescência/métodos , Ligação Proteica , Sítios de Ligação , Ânions , Termodinâmica , Antibacterianos/farmacologia
17.
Biochim Biophys Acta Gen Subj ; 1868(3): 130546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38141885

RESUMO

INTRODUCTION: Although photophysical properties of Radachlorin photosensitizer (PS) were extensively studied in solutions and cells, no data is available on variations of its characteristics upon binding to serum albumins, which are major transporters in blood and nutrients in cell culture media. OBJECTIVES: The primary objective of this study was to analyze changes in photophysical properties of Radachlorin molecules upon their binding to human and bovine serum albumins at different microenvironment properties. METHODS: Experiments were performed using time-resolved fluorescence spectroscopy and fluorescence recovery after photobleaching. Variations in fluorescence spectra and lifetime, fluorescence anisotropy, rotational and translational diffusion of PS molecules upon binding to albumins were studied in normal, basic and acidic conditions and at different concentrations of albumin and PS molecules. RESULTS: Radachlorin molecules effectively bind to both types of serum albumins, which causes changes in photophysical properties of the PS. A minor red shift of the fluorescence spectrum, an increase in fluorescence lifetime and anisotropy and substantial decrease of translational and rotational mobility of PS molecules were observed upon their binding to albumins. The analysis of rotational diffusion time provided robust evaluation of the bound fraction of PS molecules. Both the highly acidic microenvironment and increase in alcohol concentration above 40% resulted in detachment of PS molecules from albumins. Photophysical properties of Radachlorin in complexes with BSA and HSA were found to be slightly different. CONCLUSIONS: Binding of Radachlorin photosensitizer to either BSA or HSA affects significantly its photophysical properties, which may also vary with microenvironment acidity and alcohol concentration.


Assuntos
Fármacos Fotossensibilizantes , Porfirinas , Albumina Sérica , Humanos , Albumina Sérica/química , Albumina Sérica/metabolismo , Fármacos Fotossensibilizantes/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Combinação de Medicamentos
18.
Protein Sci ; 33(2): e4887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38152025

RESUMO

The pharmacokinetic properties of small biotherapeutics can be enhanced via conjugation to cross-reactive albumin-binding ligands in a process that improves their safety and accelerates testing through multiple pre-clinical animal models. In this context, the small and stable heavy-chain-only nanobody NbAlb1, capable of binding both human and murine albumin, has recently been successfully applied to improve the stability and prolong the in vivo plasma residence time of multiple small therapeutic candidates. Despite its clinical efficacy, the mechanism of cross-reactivity of NbAlb1 between human and murine serum albumins has not yet been investigated. To unveil the molecular basis of such an interaction, we solved the crystal structure of human serum albumin (hSA) in complex with NbAlb1. The structure was obtained by harnessing the unique features of a megabody chimeric protein, comprising NbAlb1 grafted onto a modified version of the circularly permutated and bacterial-derived protein HopQ. This structure showed that NbAlb1 contacts a yet unexplored binding site located in the peripheral region of domain II that is conserved in both human and mouse serum albumin proteins. Furthermore, we show that the binding of NbAlb1 to both serum albumin proteins is retained even at acidic pH levels, thus explaining its extended in vivo half-life. The elucidation of the molecular basis of NbAlb1 cross-reactivity to human and murine albumins might guide the design of novel nanobodies with broader reactivity toward a larger panel of serum albumins, thus facilitating the pre-clinical and clinical phases in humans.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Camundongos , Animais , Albumina Sérica Humana/metabolismo , Ligação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Sítios de Ligação , Domínios Proteicos
19.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139052

RESUMO

Vicenin-2, a flavonoid categorized as a flavones subclass, exhibits a distinctive and uncommon C-glycosidic linkage. Emerging evidence challenges the notion that deglycosylation is not a prerequisite for the absorption of C-glycosyl flavonoid in the small intestine. Capitalizing on this experimental insight and considering its biological attributes, we conducted different assays to test the anti-aggregative and antioxidant capabilities of vicenin-2 on human serum albumin under stressful conditions. Within the concentration range of 0.1-25.0 µM, vicenin-2 effectively thwarted the heat-induced HSA fibrillation and aggregation of HSA. Furthermore, in this study, we have observed that vicenin-2 demonstrated protective effects against superoxide anion and hydroxyl radicals, but it did not provide defense against active chlorine. To elucidate the underlying mechanisms, behind this biological activity, various spectroscopy techniques were employed. UV-visible spectroscopy revealed an interaction between HSA and vicenin-2. This interaction involves the cinnamoyl system found in vicenin-2, with a peak of absorbance observed at around 338 nm. Further evidence of the interaction comes from circular dichroism spectrum, which shows that the formation of bimolecular complex causes a reduction in α-helix structures. Fluorescence and displacement investigations indicated modifications near Trp214, identifying Sudlow's site I, similarly to the primary binding site. Molecular modeling revealed that vicenin-2, in nonplanar conformation, generated hydrophobic interactions, Pi-pi stacking, and hydrogen bonds inside Sudlow's site I. These findings expand our understanding of how flavonoids bind to HSA, demonstrating the potential of the complex to counteract fibrillation and oxidative stress.


Assuntos
Temperatura Alta , Albumina Sérica , Humanos , Ligação Proteica , Albumina Sérica/metabolismo , Sítios de Ligação , Albumina Sérica Humana/química , Dicroísmo Circular , Flavonoides/farmacologia , Flavonoides/metabolismo , Estresse Oxidativo , Espectrometria de Fluorescência , Termodinâmica , Simulação de Acoplamento Molecular
20.
BMC Pediatr ; 23(1): 547, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907890

RESUMO

BACKGROUND: Anorexia nervosa (AN) is frequently associated with liver dysfunction, but the precise mechanism remains undefined. Since the nutritional marker albumin has a low correlation with changes in body weight in AN, and patients with AN often have dehydration as a complication, we also examined whether haematocrit (HCT)-adjusted serum albumin could be a better nutritional marker in AN. CASE PRESENTATION: We describe a 15-year-old girl with severe weight loss and liver damage whose liver enzymes normalized after 1.5 months of hospitalization and weight gain. We found a significant correlation between body weight (BW) and HCT-adjusted serum albumin (Spearman's rank correlation coefficient (rs) = 0.66, P = 5.28 × 10-3) and between BW and alanine aminotransferase (ALT) (rs = -0.825, P = 8.45 × 10-5). After division by HCT, correlations between serum albumin and ALT (rs = -0.835, P = 5.24 × 10-5) and between the iron-storage protein ferritin and the liver enzyme gamma-glutamyl transferase (rs = 1.0, P = 0.017) were also statistically significant. CONCLUSION: These results suggest that improvement of the nutritional status in AN could relieve liver dysfunction and facilitate iron transport. Since a decrease in the iron-transport protein transferrin presumably increases labile non-transferrin-bound iron, resulting in excess reactive oxygen species production, a defect in iron transport due to malnutrition could be one of the causes of liver injury in AN. In addition, HCT-adjusted albumin could be a better marker than its raw data to assess changes in nutritional status in AN.


Assuntos
Anorexia Nervosa , Sobrecarga de Ferro , Hepatopatias , Feminino , Humanos , Adolescente , Estado Nutricional , Anorexia Nervosa/complicações , Anorexia Nervosa/metabolismo , Hematócrito , Ferro , Fígado/metabolismo , Albumina Sérica/metabolismo , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...